整体的自动调节就显得非常智能化了。
这个技术的主要难度就在于,必须要让飞行员的操作意图,被飞机主控制系统清晰的捕捉,就牵扯到座舱操作间,手动控制部件相关操作的传感能力,以及精细的传感控制能力。
传感器不是问题,关键还在于控制系统的内部分析。
赵奕很快就完成了主控制系统的框架,后来就发现最重要的还是分析算法,怎么样根据传感器得到的数据,‘计算出’飞行员最有可能的意图,才是主控制系统的关键。
当然还有个更简单的方法,就是给飞机固定设计几个模式,让飞机直接做相应模式的转变,但直接性模式的改变,会让飞机状态调整过程中过于僵化,也和外形设计中各个部件,根据风力、风向自动调节的功能产生冲突。
所以必须要设计出三个模式,一个是智能自动控制系统,一切都让系统做计算,让飞行员操作变得更加简单。
一个是嵌入模式形态,固定几种最常用的模式。
最后就是应急手动控制模式。
在控制系统出现问题,或者处在非常极端的情况下,飞行员可以选择进入手动控制模式,固定外形几个部件的位置来应对。
想要最大化发挥战鹰-1的性能,还是要依靠智能控制系统。
赵奕连续很长时间,都在做智能控制系统,他有种找回‘老本行’的感觉,他最初的成就就在计算机算法上,新的智能算法还是很有意思的,因为算法的难度相当高,甚至不亚于破解世界数学难题。
不过赵奕的研发生活相对还是很轻松,因为他没有办法紧张起来,最大的限制还是来自于学习币,学习币基本消耗一空的情况下,他都是积攒一点日常币,再抽时间做一点有难度的算法研究。
虽然在赵奕来看,智能控制系统的研发速度很慢,实际上,只是相对于他自己的速度,完成的时间并不慢。
年后三个月时间左右,他还是完成了所有的代码,并使用《监察律》进行检测,还调试运行了一下,发现没什么问题就可以结束了。
与此同时。
战鹰特研小组的人,乃至于战鹰组,包括袁海涛、周庆等人,因为长期和赵奕一起办公,也知道他具体在干什么。
他们是外行人不懂。