第0080章 欧拉乘积公式

“用著作等身来形容欧拉是恰如其分的,他在短短的一生中就写了八百多本书,从二十岁开始,每年平均差不多写十五本,而我们用到的与他有关的公式有哪些呢?查一下数学和物理教科书的索引就能找到答案了:欧拉角(刚体运动)、欧拉常数(无穷级数)、欧拉方程(流体动力学)、欧拉公式(复合变量)、欧拉多角曲线(微分方程)、欧拉齐性函数定理(摘微分方程)、欧拉变换(无穷级数)、伯努利-欧拉定律(弹性力学)、欧拉傅里叶公式(三角函数)、欧拉-拉格朗日方程(变分学,力学)以及欧拉-马克劳林公式(数字法),而这,仅仅只是较为重要的一部分。”

田立心说到这,安静的教室中响起了窃窃私语。

“欧拉也太牛了吧,十三岁上大学,二十岁获得博士学位,而这只是他的开始。”

“以前都没怎么注意过他,想不到这么牛。”

“每年八百页论文,要是都投给sci,编辑们都看不过来啊。”

“八百本书,我一辈子都看不完啊,我还是转系算了。”

……

田立心将刚才列举出来的公式擦去,又在黑板上写了一个公式,正是费马定理。

“有人能认出这个方程吧?这是十七世纪的数学家费马写下的公式,当时还叫费马猜想,直到三百年后,也就是五年前才由英国的数学家证明出来,这个公式就此成了费马大定理。为什么将这个公式写出来呢?因为这个猜想与数论的形成息息相关,而数学王子高斯也说过,‘数学是自然科学之母,而数论是数学之根’,由此可见,数论的难度和在数学中的地位有多高了。而欧拉,是唯一一个在十八世纪对费马猜想有所突破的数学家,他证明了n=3的情况下,这个猜想是成立的。”

“欧拉是解析数论的奠基人,他提出了欧拉恒等式,也叫欧拉公式,建立了数论和分析之间的联系,从此就可以用微积分研究数论了。后来,高斯的学生黎曼,将欧拉恒等式推广到复数,就此提出了黎曼猜想。”

“欧拉恒等式是数学中最令人着迷的公式之一,它将数学中最重要的几个常数联系到了一起。包括e、π、i和1,还有数学中最常见的0。因此,数学家们评价它是上帝创造的公式,我们只能看而不能理解它。’”

“再回到一开始提出的问题,我们到底是怎么研究质数分布的?大家可能想到了,正是伟大的欧拉为我们找到了一个基本工具,也就是著名的欧拉乘积公式。”

1+1/2s+1/3s+…+1/ns+…=[1/]x[1/]x[1/]x…x[1/]x…

田立心顺手将这个公式写在黑板上,“为了节约篇幅,我们经常用大写的希腊字母Σ表示求和,用大写的希腊字母Π表示连乘。此外,我们初中时就学过指数为负的乘方是什么意思,a的-b次方等于a的b次方的倒数,即1除以a的b次方。因此,我们也可以将欧拉乘积公式简写成下面的式子。”

Σnn-s=Πp-1。