第246页

“那么,我们现在来聊一些关于代数上的问题如何?”

“当然可以。”庄蔚然笑着。

【……

设a是一个三阶矩阵,-1,1,0是a的特征值,且α1=(1,0,-1)t和α2=(1,0,1)t是a的分别属于特征值-1,1的特征向量

……

α3=(x1,x2,x3)t,其中x1,x2,x3为实数,是矩阵a的属于特征值0的一个特征向量根据引理2,可以得到αt1α3=0和αt2α3=0,由此推出x1=x3=0于是α3=(0,k,0)t,其中k为任意非零实数

……1】

【……

q是两个nxn矩阵,满足条件(i)和(ii)令u=-1q下面验证u与Λ可交换利用a=Λ,以及是一个可逆矩阵,得到a=Λ-1由于aq=qΛ,得到q的每个列向量都是a的特征向量,但这些特征向量不一定线性无关,因为q不一定可逆

……

也就是证明每一个和Λ可交换的矩阵都可以表示成-1q这种形式,且,q满足条件(i)和(ii)设u是一个满足uΛ=Λu的nxn矩阵假设a是一个和Λ相似的矩阵则a可以对角化于是存在一个可逆矩阵满足a=Λ,其实也就是把矩阵的列向量按次序取为a的n个线性无关的特征向量

……2】

两人已经开始谈论起来,关于代数方面,两人都是深入了解过的,所以谈论起来,说不上谁强谁弱。但是思想和理念肯定是不一样的,那么就会产生一些分歧,而这些分歧又会让两人的思想擦出不一样的火花。

这也是为什么庄蔚然喜欢在国外的大学当访问学者的原因,在国内其实很少有人能够跟得上他的思路。那些老教授,或许能够跟上他的思路,但是反应有些慢半拍,然而在国外有一大票的顶级学者可以和他交流。