也正是因为交流电的原理,在长距离传送过程中,随着线路中电流的不断变化,又反向产生出了一个变换磁场,电与磁的关系永远是这么微妙,相爱相杀。
完了没?当然没完,电磁感应这才刚刚开始,这个磁场同样会产生感应电流来抑制线路中的电流,这部分电流虽然与输电主流相比微不足道,但也依然让电能牺牲了一些,线路越长,牺牲的越多,效率也就越低。
这就是电感,阻碍交流输电的最大元凶。
当然输电线路铜质电线的固有电阻也会使电能损耗,可铜已经是最科学效率的选择了,在现有材料学的范畴内,已经没什么做文章的空间。
但在电磁学范畴内,我们还有空间。
这种电感产生的阻碍,称之为感抗,与交流电相同,它的角度与大小都在不断变化,正弦变化,乳臀变化。
于是在60年前左右,一位大哥就这个该死特性,想到了输电过程中又一个恶心的阻碍,电容,电容实际上就是电池的基本原理,两块板子,中间产生电场,那又是一个复杂的概念了,虽然高中物理就聊过,但也许物理老师都没完全搞明白。
抛去中间复杂的电磁学知识,如果在输电线路中加入电容,同样会产生阻碍电能传递的东西,这东西叫容抗。
感抗+容抗+铜线电阻,哥儿仨凑一块儿,阻碍电能输送的元凶就齐了。
引入了电容后,60年前的那个家伙不禁脑洞大开,假设让电容造成的容抗,与电感造成的感抗处于一种相反状态,大家负负得正,是不是就都老实了?这哥俩打的两败俱伤,是不是就没功夫阻碍输电了?
脑洞大开的大哥,几乎不用试验,就联想到了一个惊人的事实,作为物理学小天才,他立刻想到电容电压滞后电流90°,电感电压超前电流90°。一个建立在基本电学原理上的,简单的s、s微分揭示了这一切。
这简直就是造物主神圣的赐予,一个超了90°,一个落了90°,加一起刚好差了180°,完全相反!人们几乎不用再加什么复杂的技术手段,这哥俩儿天生就可以抵消!
可以想象,电感电压在波峰的时候,电容电压正好在波谷,一秒钟50次往返,永远是那么协调,造物主帮你控制着一切。
此外,在线路中增加电容是如此轻而易举又廉价的一件事情!几乎不会影响到输电!串联进去,补偿那个该死的电感!
因此【串联补偿】这个术语就此产生,串联补偿又名无功补偿,因为整个过程都是不做功的,都是一种基于电磁电场原理层面的补偿,相当于【电感】说我打了你一拳,【电容】说我还了你一拳,然后大家都心满意足的走了,虽然谁也没打谁,但这事儿解决了。反过来说,如果没有【电容】口头接受这一拳,【电感】没人聊,真的会打出来这一拳,电能输送就会产生损耗。
学霸也有春天,靠理论物理学也可以拯救世界!